General principles and techniques 1

3.1.3 Nature of the electron 3.1.4 Population of energy levels 3.2 Atomic orbitals and chemical bonds 3.2.1 Ionic bonds 3.2.2 Covalent molecules 3.2.3...

0 downloads 12 Views 622KB Size
v

Contributors Preface to First Edition

xvii

Preface to Second Edition

General

Partl 1

1.1 1.2 1.3

2

Introduction F. W .FIFIELD

2.3 2.4

2.5

and techniques

1

3 and P .J .HAINES

Environmental science and analytical chemistry Analytical chemistry Overall analytical processes 1.3.1 Defining the aims of an analytical programme 1.3.2 Selection of an analytical method 1.3.3 Sampling. sample handling and pretreatment 1.3.4 Analytical measurements 1.3.5 Method validation and quality assurance 1.3.6 Data assessmentand interpretation 1.3.7 Safety Analytical F.W.

2.1 2.2

principles

xix

environmental

data:

assessment

and

3 4 6 7 7 7 10 10 ..

interpretation

13

FIFIELD

Introduction Basic concepts and definitions 2.2.1 True result 2.2.2 Population 2.2.3 Statistical sample 2.2.4 Error 2.2.5 Accuracy 2.2.6 Precision 2.2. 7 The range. or spread of data 2.2.8 Distribution curves 2.2.9 The mean 2.2.10 The mode 2.2.11 The median 2~2.12 Degrees of freedom 2.2.13 Standard deviation 2.2.14 The variance 2.2.15 Confidence levels and confidence limits The nature and origin of.errors 2.3.1 Types of errors Frequency distributions 2.4.1 Normal and Student t distributions 2.4.2 Other distributions Assessment and interpretation of analytical results 2.5.1 Introduction 2.5.2 Data reliability

a

13 13 13 14

~-

14 14 14 15 15 16 16 16 16 17 17 111

18 19 21 22 23 23 23 23

CONTENTS 2.5.3 2.5.4 2.5.5 2.5.6 Further reading

Precision co~parisons The assessment and comparison of means Graphical methods, Detection limits

Self-studyexercises Answers

3

Chemical

principles

P .1. HAINES 3.1

Introduction 3.1.1 Periodicity 3.1.2 Atomic spectra 3.1.3 Nature of the electron 3.1.4 Population of energy levels 3.2 Atomic orbitals and chemical bonds 3.2.1 Ionic bonds 3.2.2 Covalent molecules 3.2.3 Polyatomic molecules 3.2.4 Metal compounds and complexes 3.2.5 Chains, rings and networks 3.3 Molecular energy levels 3.3.1 Energy of assemblies of molecules 3.4 Enthalpies of formation and reaction 3.5 Entropy and free energy 3.6 Free energy and equilibrium 3.7 The effects of temperature 3.8 Application to equilibria 3.8.1 Phase equilibria 3.8.2 Ions in solution 3.8.3 Solubility 3.8.4 Acid-base equilibria 3.8.5 Oxidation-reduction equilibria 3.8.6 Electrochemical reactions 3.8.7 Complexation 3.9 Reaction kinetics 3.10 Examples of reaction kinetics 3.10.1 Radioactive reactions 3.10.2 Ionic reactions 3.10.3 Solid-state reactions 3.10.4 Photochemical reactions 3.11 Summary Further re/lding Self-studyexercises Answers

4

Titrimetry

F.W. 4.1 4.2

,~.3

and

gravimetry

FIFIELD

Introduction Titrimetry 4.2.1 Introduction

,

4.2.2 Acid-base tit~ations 4.2.3 Complexometric titrations 4.2.4 Redox titrations Gravimetry 4.3.1 Principles

.

CONTENTS 4.3.2 Gravimetric procedures Further reading 5

Separation F.W.

88 90

91

techniques

FIFIELD

5.1 5.2

Introduction Solvent extraction 5.2.1 Introduction 5.2.2 Solvent extraction of analytes from environmental 5.2.3 Separation of mixtures by solvent extraction 5.3 Chromatography 5.3.1 Introduction 5.3.2 Characteristics of chromatograms 5.3.3 High-performance liquid chromatography 5.3.4 lon-exchange chromatography 5.3.5 Thin-Iayer and paper chromatography 5.3.6 Gas chromatography 5.4 Electrophoresis 5.4.1 Introduction 5.4.2 Capillary electrophoresis (CE) 5.5 Other separation techniques 5.5.1 Supercritical fluid chromatography (SFC) 5.5.2 Gel permeation chromatography (GPC) 5.5.3 Distillation and volatilisation 5.5.4 Precipitation Further reading

91 91 91 91 92 96 96 97 100 103 106 108 1!2 1!2 1!2 1!5 1!5 1!5 1!5 1!6 1!6 1!6 117

samples

Self-studyexercises Answers

6

General

principles

of spectrometry

P.J. HAINES 6.1 6.2 6.3

Introduction Energy levels Types of transition 6.3.1 Lasers 6.4 Molecular dissociation 6.5 Electromagnetic radiation 6.6 The electromagnetic spectrum 6.7 Interaction of species with electromagnetic 6.8 Absorption laws 6.9 Spectrometric instrumentation 6.9.1 Single-beam spectrometer 6.9.2 Double-beam spectrometer 6.9.3 Fourier-transform instruments Further reading

"

Atomic F.W.

7.1 7.2

7.3

118 118 1!8 1!9 121 122 124 124 128 129 130 131 132 133

radiation

spectrometry FIFIELD

Introduction Flame emission spectrometry 7.2.1 The ~emical flame Plasma emission spectrometry 7.3.1 Introduction 7.3.2 Inductively coupled plasma-atomic

.

emission spectrometry

(ICP-AES)

134 135 135 138 138 138

CONTENTS 7.4

7.5

Inorganic [email protected] 7.4.1 Introduction 7.4.2 Inductively coupled'Plasma-mass X-ray emission techniques

spectrometry

(ICP-MS)

7.5.1 Introduction 7.5.2 Electron probe microanalysis 7.5.3 X-ray fluorescence spectrometry 7.6 Atomic absorption spectrometry 7.6.1 Introduction 7.6.2 Sharp-Iine radiation 7.6.3 AAS measurements 7.6.4 Flame AAS 7.6.5 Electrothermal AAS 7.7 Atomic fluorescence spectrometry 7.8 Use of atomic spectrometry Further reading Self-studyexercises Answers 8

Molecular spectrometry P .1. HAINES

8.1 8.2

Introduction Ultraviolet and visible spectrophotometry 8.2.1 Instrumentation 8.2.2 Band spectra 8.2.3 Polyatomic organic molecules 8.2.4 Solvent effects 8.2.5 .Metal complexes 8.2.6 Applications 8.2.7 UV fluorescence methods 8.2.8 Combined separation and UV techniques 8.3 Infrared spectrometry 8.3.1 Sampling 8.3.2 Infrared absorption 8.3.3 Polyatomic molecules 8.3.4 Combinations of infrared and separation techniques 8.3.5 Applications of infrared spectrometry in environmental analysis B.4 Nuclear magnetic resonancespectrometry (NMR) 8.4.1 Instrumentation 8.4.2 Solvents for NMR work 8.4.3 The chemical shift 8.4.4 The peak area 8,.4.5 Spin-spin coupling 8.4.6 Applications of NMR 8.5 Mass spectrometry (MS) 8.5.1 Instrumentation 8.5.2 Isotopic composition and accurate masses 8.5.3 Nitrogen rule 8.5.4 Fragmentation 8.5.5 Applications of massspectrometry 8.6 Structure elucidation Further reading Self-studyexercises Answers

a

CONTENTS 9

Measurement F.W.

9.1 9.2

9.3

10

analysis Concentration

10.4

10.5

10.6

radionuclides

and separation of radionuclides

Electroanalytical

203 203 204 204 205 206 207 209 210 21l 212 213 215 215 217 219 219 219

techniques -DHOO'F

Introduction Electrochemical principles Potentiometric techniques 10.3.1 Introduction and theory 10.3.2 Practical considerations and applications 10.3.3 Potentiometric titrations 10.3.4 Current developments Voltammetric and controlled potential techniques 10.4.1 Introduction 10.4.2 Theory 10.4.3 Practical considerations and applications 10.4.4 Techniques Electrochemical detection in flowing streams 10.5.1 Introduction 10.5.2 Potentiometric measurements in flowing streams 10.5.3 Voltammetric measurement in flowing streams Other electroanalytical techniques 10.6.1 Introduction ,

10.6.2 Conductometry 10.6.3 Coulometry 10.6.4 Electrogravimetry Further reading Self-studyexercises Answers

11

and

reading

E. BUCKLEY 10.1 10.2 10.3

radiations

Introduction Ionising radiations and radioactivity 9.2.1 Alpha radiation (a) 9.2.2 Beta radiation ({3- or {3+) 9.2.3 Gamma radiation (1) 9.2.4 Internal conversion (ic) 9.2.5 Radioactive decay 9.2.6 Units of radioactivity and radiation measurement The detection and measurement of radiation 9.3.1 Gas ionisation detectors 9.3.2 Semiconductor detectors 9.3.3 Sodium iodide detectors 9.3.4 Organic scintillators 9.3.5 Liquid scintillation counting 9.3.6 Detection by films 9.3.7 The importance of autoradiographic techniques in environmental 9.3.8

Further

of iouising

FIFIELD

Thermal methods P .1. HAINES . 11.1 Introduction 11.2 Definitions 11.3 General apparatus

220 220 222 222 224 233 234 234 234 235 236 240 246 246 247 247 249 249 249 250 250 251 251 252

253

of analysis

253 253 254

a

xii

CONTENTS 11.4

11.5

11.6

Factors affecting the~al analysis results 11.4.1 The sample 11.4.2 The crucible ~... 11.4.3 The rate of heating (dT/dt) 11.4.4 The atmosphere 11.4.5 The mass of the sample Thermogravimetry 11.5.1 Apparatus 11.5.2 Applications of thermogravimetry Differential thermal analysis (DTA) and differential

scanning calorimetry

(DSC) 11.6.1 Differential thermal analysis (DTA) 11.6.2 Differential scanning calorimetry (DSC) 11.6.3 Apparatus 11.6.4 Applications 11.7 Thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) 11.7.1 Apparatus 11.7.2 Applications 11.8 Simultaneous techniques and product analysis 11.8.1 Apparatus 11.8.2 Evolved gas analysis (EGA) 11.8.3 Analysis of products and reactions 11.8.4 Recent advances in thermal analysis techniques 11.9 Environmental applications of thermal methods 11.9.1 Geological materials 11.9.2 Recycling 11.9.3 Residues 11.9.4 Vaporisation studies 11.9.5 Flue gas treatment 11.9.6 Purity 11.10 Summary Further reading Self-studyexercises Answers u

Biological

indicators

R. MANL

y

12.1 12.2

Introduction Monitoring community structure 12.2.1 Diversity indices 12.2.2 Similarity indices 12.2.3 Species abundance patterns ~2.2.4 Multivariate analyses 12.3 Bioindicator methods 12.3.1 Biotic indices 12.3.2 Pollutant mapping 12.3.3 Biochemical indicators 12.3.4 Morphological and histological indicators 12.3.5 Detector and sentinel organisms 12.3.6 Comparative methods 12.4 Microbiological monitoring 12.4.1 Intrusive microorganisms and faecal contamination 12.5 Bioaccumulators 12.6 Bioassays Further reading

a

CONTENTS

Part II 13

Specific applications

Speciation G.L.

CHRISTIE

13.1 13.2 13.3

The importance of speciation Definition of speciation The determination of trace metal speciation 13.3.1 Computer modelling 13.3.2 Experimental determination of speciation 13.4 Concluding remarks Further reading

14

The analysis of atmospheric C.K.

samples

309 309 309 309 314 324 325

326

LAIRD

Introduction Atmospheric analyses 14.2.1 Measurements of atmospheric composition 14.2.2 Emission measurements 14.2.3 Indoor and workplace atmospheres 14.3 Techniques for gas analysis 14.3.1 Gas chromatography 14.3.2 Spectrometric methods 14.3.3 Electrochemical sensors 14.3.4 Chemical methods and detector tubes 14.3.5 Diffusion tubes and diffusion denuder tubes 1.4.4 Sampling 14.4.1 Ambient air 14.4.2 Emissions 14.5 Calibration of gas analysers 14.6 Determination of the main air pollutants and oxygen 14.6.1 Carbon monoxide 14.6.2 Nitrogen oxides 14.6.3 Ozone 14.6.4 Sulphur dioxide 14.6.5 Volatile organic compounds 14.6.6 Oxygen 14.7 Determination of some other air pollutants 14.7.1 Methane 14.7.2 Chlorofluorocarbons 14.7.3 Organic nitrates 14.7.4 Nitrous oxide 14.7.5 Toxic organic micropollutants 14.7.6 Hydroxyl and hydroperoxyl radical 14.7.7 Combustible gases 14.8 Sampling and analysis of particles and aerosols 14.8.1 Sampling particles and aerosols 14.8.2 Particle and aerosol composition Further reading References

326 327 327 327 328 328 328 328 336 336 337 339 339 340 341 343 343 344 345 346 347 348 351 351 351 351 352 352 353 353 353 354 359 359 1~Q

15

360

14.1 14.2

is.l 15.2

Trace elements N.I. WARD

.

Trace elements in the environment Natural levels and chemical forms

360 1li7

a

CONTENTS 15.3

Trace element contamination and pollution 15.3.1 Air particulates 15.3.2 Natural waters ", 15.3.3 Soils and sediments -, 15.3.4 Plants 15.3.5 Animals and humans 15.4 Sampling and sample preparation 15.4.1 Atmospheric samples 15.4.2 Water samples 15.4.3 Soils and sediments 15.4.4 Plants 15.4.5 Biological tissues and fluids 15.4.6 Sample digestion methods 15.5 Methods of analysis 15.6 Selected important examples 15.6.1 Lead 15.6.2 Aluminium Further reading

16

Environmental F.W.

radiation

and

radioactivity

FIFIELD

16.1 16.2 16.3

Introduction The hazards of ionising radiations and their assessment Natural sources of radiation 16.3.1 Radionuclides of geological origin 16.3.2 Radionuclides resulting from cosmic rays 16.4 Artificial sources of radiation 16.4.1 .Radiation and radioactivity in research and medicine 16.4.2 Nuclear power 16.5 Radiogenic dating 16.5.1 Geological dating 16.5.2 Carbon dating 16.5.3 Tritium dating 16.5.4 Lead-210 dating 16.5.5 Thermoluminescence and electron spin resonance dating Further reading

17

Contaminated F.W.

landsites

FIFIELD

17.1 17.2

Introduction The nature of contaminated sites 17.2.1 Origins of contamination 17.2.2 Physical characteristics of landsites 17.3 Assessments 17.3.1 Investigational plan Further reading

18

The F.W.

18.1 18.2 18.3 18.4 18.5

analysis

of water

FIFIELD

Introduction pH. acidity and alkalinity Dissolved oxygen and oxygen demand Total organic carbon Metals

.

CONTENTS 18..6 Dissolved salts 18.7 Trace organics 18.8 Radioactivity and radionuclides 18.9 Water surveys and sampling Further reading

in water

425 426 427 427 428

19 The determination of trace amounts of or~anic compounds -C.J. WELCH 19.1 19.2

Introduction Sample preparation 19.2.1 Maceration, dissolution and extraction 19.2.2 Partition 19.2.3 Concentration of the alialyte 19.3 Chromatography 19.3.1 Gas chromatography 19.3.2 High-performance liquid chromatography 19.3.3 Capillary (zone) electrophoresis 19.3.4 Quantitation 19.4 Screening analysis 19.5 GC applications: pesticide analysis 19.6 HPLC: trace analysis 19.7 HPLC applications 19.7.1 Aromatic hydrocarbons 19.8 GC/HPLC applications 19.8.1 Trace organic analysis in water 19.8.2 Analysis of organic materials in soil and sediments 19.8.3 Analysis of amines Further reading 20

429 431 432 433 436 437 438 439 439 439 440 441 443 445 445 446 446 449 449 450

Ecotoxicology R. MANLEY

20.1 20.2 20.3 20.4 20.5

Introduction Toxicant behaviour in living organisms Dose-response relationships of toxicants Toxicants and the environment Toxicity testing 20.5.1 Bioassays 20.6 Ecological risk assessment Further reading

Glossary Index

.

452 452 454 460 461 463 468 470